elektrik qurğuları

Elektrik enerjisinin istehsalı, ötürülməsi və paylanması üçün lazım olan avadanlıq və onlara aid tikililər

elektrik enerjisi istehlakçısı
elektrik rabitəsi
OBASTAN VİKİ
Kompüter Qurğuları
Kompüter qurğuları — İlk dəfə Blez Paskal (Fransa) 1642-ci ildə cəmləyici maşın hazırlamışdır. 1673-cü ildə Qotfrid Vilhelm Leybnits (Almaniya) hesab əməllərini yerinə yetirən mexaniki arifmometr yaratmışdır. 1830 - cu ildə Çarlz Bebic (İngiltərə) proqramla işləyən hesablama maşını (analitik maşın) yaratmağa cəhd göstərmişdır. Bebicin ideyaları sonralar universal kompüterlərin yaradılmasının əsasını qoymuşdur. 1930-cu ildə A.Turinq (İngiltərə) və E. Post (ABŞ) tərəfindən universal kompüterlərin yaradılmasının nəzəri əsasları inkişaf etdirilmişdir. Müasir kompüterlərin əsas iş prinsipləri XX əsrin 40-cı illərində Amerika alimləri Con Fon Neyman, Q.Qoldsteyn və A.Beris tərəfindən verilmişdir. Həmin prinsiplər 1946-cı ildə ABŞ-da elektron lampalı elementlərdə ENİAC adlı universal kompüterin yaradılması ilə həyata keçirilmişdir. Bu tarix müasir kompüter texnikasının yaranma tarixi hesab olunmuşdur. == İnkişaf tarixi == EHM-lər inkişaf tarixinə uyğun olaraq aşağıdakı mərhələlərdən keçmişdir: I nəsil (1950-1959) - elektron lampalı kompüterlər. Onlardan əsasən riyazi məsələlərin həlli üçün istifadə olunurdu.Bu nəsil maşınların sürəti və yaddaş tutumu çox az, proqram təminatı zəif, enerji sərfi çox böyük idi.
Periferiya qurğuları
Periferiya və ya periferiya qurğuları ― kompüterə qoşulan və onun mikroprosessoru tərəfindən idarə olunan qurğu. Periferiya qurğuları məlumatı kompüterə daxil etmək və ondan məlumat almaq üçün istifadə olunan köməkçi cihazlardır. Başqa bu termin komputer sisteminə asanlıqla qoşula və sistemdən çıxarıla bilən cihazlar üçün istifadə olunur. Kompüterlə əlaqəsinə əsasən periferiya qurğuları bir neçə kateqoriyaya bölünür: Giriş qurğuları: siçan, klaviatura, qrafik planşet, təsvir skaneri, barkod oxuyucusu, oyun nəzarətçisi, işıq qələmi, işıq silahı, mikrofon və veb- kamera kimi cihazlar məlumatları və ya təlimatları kompüterə daxil edir; Çıxış qurğuları: kompüter monitoru, proyektor, printer, qulaqlıq və kompüter dinamiki kimi cihazlar məlumatın kompüterdən çıxışını təmin edir; Giriş/çıxış qurğuları: kompüterdə məlumatın saxlanılması üçün istifadə olunan qurğuları, modem, şəbəkə adapteri və çoxfunksiyalı printer kimi qurğular həm giriş, həm də çıxış funksiyalarını yerinə yetirir.
Qazma qurğuları
Qazma qurğusu – qazma nöqtəsində quraşdırılmış və qazıma alətinin köməyi ilə sərbəst texnoloji əməliyyatları yerinə yetirməyi təmin edən qazıma maşınları, mexanizmimləri və avadanlıqları kompleksidir. == Qazma qurğularına qoyulan tələblər == Hər bir layihə olunmuş quyu üçün qazıma avadanlığı komplekti və qurğusu seçildikdə geoloji və iqlim şəraiti, yer səthinin relyefi, qazmanın növü və s. amillər nəzərə alınır. Seçilmiş komplekt və qazma qurğusu bu göstərilən mümkün qədər müvfiq olmalıdır. Bundan başqa hər bir qazma qurğusu aşağıdakı tələbləri ödəməlidir: Qazma qurğusu çox sadə olmaqla qazma prosesini tamamilə təmin etməlidir; Qurğunun qurulması və sökülməsi mümkün qədər az vaxt tələb etməlidir; Qurğuda qazma prosesi və endirmə qaldırma əməliyyatı mexanikləşdirilməlidir; Qazma qurğusu təhlükəsizlik tələblərini tam təmin etməlidir; Qurğu bir nöqtədən başqa nöqtəyə olduqca rahat və sökülmədən aparılmalıdır; Qurğu iqtisadi cəhətdən mümkün qədər ucuz başa gəlməlidir. və s. == Qazma qurğularının növləri == Ümumi halda qazma qurğuları stasionar və səyyar olur. Səyyar qazma qurğuları tırtıllı traktor, avtomaşın və sürüngəclər üzərində quraşdırılmış dayaz və nisbətən dayaz quyuların qazılmasında tətbiq edilir. Güc intiqallarına görə qazma qurğuları fərdi və qrup ilə işləyən olur. Enerjinin növünə görə isə qazma qurğuları: elektrik intiqallı, dizel intiqallı və elektrik-dizel intiqallı ola bilər.
Şəbəkə qurğuları
Birdən çox kompüterin məlumat mübadiləsi, proqram təminatı və avadanlıq mübadiləsi, mərkəzi idarəetmə və dəstək asanlığı kimi çox müxtəlif səbəblərdən ötəri bir-birinə bağlandığı quruluşa şəbəkə (network) deyilir. Şəbəkə strukturlarını yaratmaq üçün çox müxtəlif şəbəkə cihazları istifadə edilə bilər. Ağ yapılarında kullanılan başlıca cihazlar: 1).Hab 2).Açar (Switch) 3).Təkrarlayıcı (Repeater) 4).Bridge 5).Yönləndirici (Router) 6).Firewall 7).Access point 8).NİC-Şəbəkə interfeys kartı 9).Modem 1).Hablar-Ən sadə şəbəkə cihazlarından biridir. Özünə aid bir güc qaynağından qidalanaraq çalışır. Şəbəkə sistemlərində siqnalların yenidən meydana gətirməsini və yenidən zamanlanmasını təmin edər. Özünə bağlı olan kompüterlərə paylaşılan bir yol təqdim edir. (Özünə gələn datayı bütün portlara göndərirlər.) Buna görə eyni anda xəbərləşmək istəyən şəbəkəyə bağlı cihazların, xəttin boşalmasını gözləmələri lazımdır. 8 ilə 24 arasında dəyişən port sayına sahib cihazlardır. Bu cihazlar şəbəkə strukturlarında ümumiyyətlə mərkəzi bir nöqtə yaratmaq və ya şəbəkənin təhlükəsizliyini artırmaq kimi məqsədlərlə istifadə edilir və yalnız bit səviyyəsində əməliyyat etmələrindən ötəri OSI modelində 1. lay cihazlarıdır.
Elektrik
Elektrik (yunanca ἤλεκτρον ēlektron „kəhraba" deməkdir) — fiziki əsasında yüklənmiş mikroskopik hissəciklərin (elektron, ion, molekula və onların kompleksi) olduğu cismin və prosesin xassələri və dəyişilməsini izah edən anlayışdır. O sakit və hərkətdə olan elektrik yükünü, həmçinin elektrik və maqnit sahəsi ilə əlaqədar fenomenləri əhatə edir. Elektrik ilə elektrik enerjisi əldə edilir. Elektrik yükünün daşıyıcısı mənfi yüklənmiş elektronlar, ionlar və müsbət yüklənmiş proton və kationlardır. Eyni qütblü yüklər bir-birini itələyir, müxtəlif yüklülər isə cəlb edir. Elektrik yükləri elektrik sahəsinin, hərəkətli yüklər isə maqnit sahəsinin əsasını təşkil edir. Elektromaqnetik dalğalar elktromeqnetik sahənin həyacanlanmasıdır və yarandıqdan sonra yük daşıyıcılarından asılı olmayaraq hərkət edə bilir. Elektrik yüklərinin keçiricidə hərəkəti sərbəst elektronların nizamlanmış hərkətindən ibarətdir. Bərk cisimlər keçiricilər, yarımkeçiricilər və dielektriklərə bölünürlər. == Tarixi == Elektrik cərəyanı hələ bizim eradan təxminən 600 il əvvəl, yunanlara məlum olmuşdur.
Damüstü reklam qurğuları
Damüstü reklam qurğular — Açıq hava reklamının bir növü. Damüstü reklam, quraşdırıldığı yerə görə (damda), ilkin və ikincidərəcəli auditoriyanı cəlb etmək üçün əvəzedilməz imic konstruksiyasıdır. Bundan əlavə, damüstü qurğu, potensial istifadəçilərə təsir göstərmək üçün yeni imkanlar açır. Bu növ qurğular hətta 10 km uzaqlıqdan belə insanların diqqətini cəlb edir. == Mənbə == Damüstü qurğular.
Elektrik Gitara
Elektrogitara və ya Elektrikli gitara — polad simlərin titrəyişlərini elektrik siqnallarına çevirən və onu səsgücləndiriciyə ötürməklə səslər yaradan gitara növü. Elektrogitara ilk dəfə olaraq cazda istifadə olunmuş, ondan həm də pop musiqisində, rok-n-rol, kantri, blyuz, embiyent, nyu-eyc və hətta çağdaş klassik musiqidə də geniş istifadə olunur.
Elektrik avtomobili
Elektrik avtomobili — elektrik enerjisi ilə işləyən bir və ya bir neçə mühərrikdən ibarət avtomobil. İlk praktiki elektrik avtomobili 1880-ci illərdə istehsal edilmişdir. Elektrik avtomobilləri 19-cu əsrin axırları və 20-ci əsrin əvvəlləri populyar olsa da, daxili yanma mühərriklərinin inkişafı və kütləvi ucuz benzin istehsalı elektrik avtomobillərinin istifadəsinin azalmasına səbəb olmuşdur. 2008-ci ildən etibarən batareyaların inkişafı, neft qiymətlərinin daha da bahalaşma qayğıları və havaya buraxılan zəhərli qazların azaldılması istəyi elektrik avtomobillərinin istehsalında yeni bir dalğa yaratmışdır. Çoxlu ölkə və yerli hökumətlər elektrik maşınlarının kütləviləşməsi üçün güzəştli kreditlər, vergi güzəştləri və s tətbiq etməyə başlamışdır. Daxili yanma mühərrikləri ilə işləyən avtomobillərlə müqayisədə elektrik avtobilləri daha az səs çıxarır. Çox ölkədə neft idxal edildiyi üçün elektrik avtomobilləri neft idxalının azaldılmasına gətirib çıxaracaq. Elektrik avtomobillərinin əsas problemlərindən biri yenidən elektrik qidalanmasının çox uzun müddət çəkməsidir. batareyaların baha olması, elektrik avtomobillərinin digər avtomobillərdən baha olmasına gətirib çıxarır, amma hal-hazırda batareya qiymətlərində eniş müşahidə olunur. Bundan başqa sürücülər növbəti mənzilə çatana qədər batareyanın tamami ilə bitməsindən qorxurlar.
Elektrik boşalması
Elektrik boşalması — Dünyada ilk dəfə rus alimləri Mixail Lomonosov (1711‐1765) və Qeorq Vilhelm Rixman (1711‐1753) və onlardan asılı olmadan amerikan alimi Frankel havada elektrik boşalmasını tədqiq etmişlər. 1743‐cü ildə M.V.Lomonosov «Allahın böyüklüyü haqqında axşam düşüncələri» əsərində ildırımın və şimal qütb parıltısının elektrik təbiətli olması ideyasını irəli sürmüşdür. Bir qədər sonra (1752‐ci ildə) Frankel və Lomonosov ildırım maşınının köməyi ilə göstərmişlər ki, ildırım və şimşək – havada güclü elektrik boşalmasıdır. Bununla yanaşı aşkar edilmişdir ki, hətta ildırım olmadıqda da havada elektrik boşalması baş verir. İldırım maşını sadə quruluşa malik olub, yaşayış evində qurulmuş Leyden bankalarından ibarət idi. Bankalardan birinin qapağı naqil vasitəsi ilə açıq havada yerləşdirilmiş metal darağa və ya dəmir milə birləşdirilirdi. Sankt-Peterburq tibbi‐cərrahiyyə akademiyasının akademiki Vasili Vladimiroviç Petrov (1761‐1834) M.V.Lomonosovun elmi işlərini inkişaf etdirərək, 1802‐ci ildə ilk dəfə olaraq (ingilis fiziki Devidən bir neçə il əvvəl) havada iki kömür elektrod arasında qövs boşalması hadisəsini müşahidə etmiş və göstərmişdir ki, havadan elektrik cərəyanı keçərkən elektrik boşalması baş verir. V.V.Petrov öz kəşfini belə təsvir edirdi: «Əgər şüşə masanın üzərinə 2‐3 qırıntı ağac kömürü qoyub, onları naqillər vasitəsi ilə güclü elektrik mənbəyinə qoşsaq və bir‐birinə yaxınlaşdırsaq, həmin kömür qırıntıları arasında parlaq (gözqamaşdırıcı) ağ işıqlanma (alov) yaranacaq və bu alovun təsirindən kömürlər yanacaq». V.V.Petrovun elmi işləri rus dilində dərc olduğuna görə, onlar xarici ölkə alimləri üçün əlçatmaz idi. Rusiyada həmin dövrdə elmi işlərə bir o qədər maraq göstərilmədiyindən həmin işlər tezliklə unudulmuşdu və məhz bu səbəbdən də, sonralar qövs boşalmasının kəşfi ingilis alimi Devinin adına yazılmışdır.
Elektrik cərəyanı
Elektrik cərəyanı – elektronların və ya ionların materialda və ya vakuumda nizamlanmış hərəkəti. Sükunət halındakı istənilən yüklü zərrəciyi hərəkətə gətirmək olar. Bu zaman Lorens və ya Kulon qüvvələrinin təsirindən istifadə olunur. Elektrik cərəyanı – yüklü hissəciklərin nizamlı hərəkətinə deyilir. Cərəyan şiddəti - ədədi qiymətcə d t {\displaystyle dt} müddətində naqilin en kəsiyindən keçən d q {\displaystyle dq} yükünün bu yükün keçmə müddətinə olan nisbətinə bərabərdir: I = d q d t {\displaystyle I={dq \over dt}} Onda xüsusi halda sabit cərəyan ( I = c o n s t {\displaystyle I=const} ) üçün alarıq: I = q t {\displaystyle I={q \over t}} Elektrik yükü vahidi – cərəyan şiddəti 1 A olan naqilin en kəsiyindən 1saniyədə keçən yük götürülür və fransız fiziki Kulonun şərəfinə 1 Kulon (1Kl) adlandırılır. Yəni, elektrik yükü vahidi törəmə vahiddir. 1 Kl = 1 A·san. Cərəyan şiddəti nəzəri olaraq I = q n v S {\displaystyle I=qnvS} düsturu ilə də hesablanır. Burada, q {\displaystyle q} - zərrəciyin yükü, n {\displaystyle n} - konsentrasiyası, v {\displaystyle v} - nizamlı hərəkət sürəti, S {\displaystyle S} isə naqilin en kəsiyinin sahəsidir. Ampermetr – cərəyan şiddətini ölçən cihazdır.
Elektrik dövrəsi
Elektrik dövrəsi — texnoloji prosesdə maşın və mexanizmləri işlətmək və idarə etmək üçün qurulan elektromexaniki sxem. Mühərrik nəzarətçisi elektrik mühərrikinin işini əvvəlcədən müəyyən edilmiş şəkildə əlaqələndirə bilən bir cihaz və ya qurğular qrupudur. Mühərrik nəzarətçisinə mühərriki işə salmaq və dayandırmaq, irəli və ya geri fırlanma seçmək, sürəti seçmək və tənzimləmək, fırlanma anı tənzimləmək və ya məhdudlaşdırmaq, həmçinin həddindən artıq yüklənmələrdən və elektrik xətalarından qorumaq üçün əl və ya avtomatik vasitə daxil ola bilər. Mühərrik tənzimləyiciləri mühərrikin sürətini və istiqamətini tənzimləmək üçün elektromexaniki keçiddən və ya güc elektron cihazlarından istifadə edə bilər. Mühərrik tənzimləyiciləri həm birbaşa cərəyan, həm də alternativ cərəyan mühərrikləri ilə istifadə olunur. Nəzarətçi mühərriki elektrik enerjisi mənbəyinə qoşmaq üçün vasitələrdən ibarətdir və həmçinin motor üçün həddindən artıq yükdən qorunma və motor və naqillər üçün həddindən artıq cərəyandan qorunma da daxil ola bilər. Mühərrik nəzarətçisi həmçinin motorun sahə dövrəsini izləyə və ya aşağı təchizatı gərginliyi, yanlış polarite və ya yanlış faza ardıcıllığı və ya yüksək mühərrik temperaturu kimi şərtləri aşkarlaya bilər. Bəzi motor tənzimləyiciləri başlanğıc başlanğıc cərəyanını məhdudlaşdırır, bu da motorun özünü sürətləndirməsinə və mexaniki yükü birbaşa birləşmədən daha yavaş birləşdirməsinə imkan verir. Mühərrik tənzimləyiciləri əl ilə ola bilər və operatordan yükü sürətləndirmək üçün addımlar arasında başlanğıc keçidinin ardıcıllığını tələb edir və ya mühərriki sürətləndirmək üçün daxili taymerlər və ya cari sensorlardan istifadə edərək tam avtomatik ola bilər. Bəzi motor kontrollerləri də elektrik mühərrikinin sürətini tənzimləməyə imkan verir.
Elektrik gərginliyi
Elektrik gərginliyi — elektrik sahәsinin bir nöqtәsindәn digәrinә vahid müsbәt yükün yerdәyişmәsi zamanı әdәdi qiymәtcә görülәn işә bәrabәr olan kәmiyyәt. Aşağıdakı düsturla hesablanır: U = A q {\displaystyle U={A \over q}} Burada q {\displaystyle q} - elektrik yükü, A {\displaystyle A} - elektrik yükünü dövrənin ixtiyari iki nöqtəsi arasında hərəkət etdirmək üçün elektrik qüvvəsinin gördüyü işdir. Potensiallı elektrik sahәsindә (elektrostatik sahәdә) bu iş yükün getdiyi yolun formasından asılı deyil. Bu halda iki nöqtә arasındakı elektrik gərginliyi (vә ya sadәcә gәrginlik) onların arasındakı potensiallar fәrqi ilә üst-üstә düşür. Әgәr sahә qeyri-potensiallı olarsa, onda gərginlik yükün nöqtәlәr arasında getdiyi yolun formasından asılı olur. Kәnar qüvvәlәr adlanan qeyri-potensiallı qüvvәlәr istәnilәn sabit cәrәyan mәnbәyinin daxilindә tәsir göstәrmәk imkanına malikdir. Cәrәyan mәnbәyinin sıxaclarındakı gәrginlik vahid müsbәt yükün mәnbәdәn kәnarda yerlәşәn yol boyunca yerdәyişmәsi zamanı elektrik cәrәyanının gördüyü işlә ölçülür; bu halda gərginlik mәnbәnin sıxaclarındakı potensiallar fәrqinә bәrabәr olub Om qanunu ilә tәyin edilir: U = ε − I r {\displaystyle U={\varepsilon }-{Ir}} burada I {\displaystyle I} – cәrәyan şiddәti, r {\displaystyle r} – naqilin daxili müqavimәti, R {\displaystyle R} – dövrәnin xarici müqavimәti, ε {\displaystyle \varepsilon } isә mәnbәnin elektrik hәrәkәt qüvvәsidir (e.h.q). Açıq dövrәdә ( I {\displaystyle I} = 0 {\displaystyle =0} ) gәrginlik mәnbәnin e.h.q.-nә bәrabәrdir. Ona görә dә dövrә açıq olduğu zaman mәnbәnin e.h.q.-ni çox vaxt onun sıxaclarındakı gərginlik kimi tәyin edirlәr. Dәyişәn cәrәyan halında gərginlik adәtәn tәsiredici (effektiv), yәni dövr әrzindәki orta kvadratik qiymәtlә tәyin olunur.
Elektrik induksiyası
Elektrik induksiyası — elektrik sahәsini xarakterizә edәn vektor kәmiyyәt; müxtәlif tәbiәtli iki vektorun cәminә bәrabәrdir: elektrik sahәsinin intensivliyi ( E {\displaystyle E} ) vә mühitin polyarlaşması ( P {\displaystyle P} ). Qauss vahidlәr sistemindә D = E + 4 π P {\displaystyle \mathbf {D} =\mathbf {E} +4\pi \mathbf {P} } BS-dә D = ε 0 E + P {\displaystyle \mathbf {D} =\varepsilon _{0}\mathbf {E} +\mathbf {P} } burada ε 0 {\displaystyle \varepsilon _{0}} – elektrik sabiti vә ya vakuumun dielektrik nüfuzluğu adlanan ölçülü konstantdır. Seqnetoelektrik xassәlәrә malik olmayan izotrop mühitdә zәif sahәlәrdә polyarlaşma vektoru sahәnin intensivliyi ilә düz mütәnasibdir. Qauss sistemindә P = χ e E {\displaystyle P=\chi _{e}E} burada χ e {\displaystyle \chi _{e}} – dielektrik qavrayıcılığı adlanan ölçüsüz sabit kәmiyyәtdir. Seqnetoelektriklәr üçün dielektrik qavrayıcılığı E {\displaystyle E} -dәn asılı olduğuna görә P {\displaystyle P} vә E {\displaystyle E} arasındakı әlaqә qeyri-xәttidir. D = ( 1 + 4 π χ e ) E = ε E {\displaystyle D=(1+4\pi \chi _{e})E=\varepsilon E} ε = 1 + 4 π χ e {\displaystyle \varepsilon =1+4\pi \chi _{e}} kәmiyyәti maddәnin dielektrik nüfuzluğu adlanır. BS-də P = χ e ε 0 E {\displaystyle P=\chi _{e}\varepsilon _{0}E} D = ε 0 ε E {\displaystyle D=\varepsilon _{0}\varepsilon E} ε = 1 + χ e {\displaystyle \varepsilon =1+\chi _{e}} Elektrik induksiya vektorunun daxil edilmәsinin mәnası ondan ibarәtdir ki, istәnilәn qapalı sәthdәn keçәn D {\displaystyle D} vektoru seli (axını) E {\displaystyle E} vektoru seli kimi verilәn sәthlә mәhdudlanan hәcm daxilindәki bütün yüklәrlә deyil, yalnız sәrbәst yüklәrlә tәyin edilir. Bu, bağlı (polyarlaşmış) yüklәri nәzәrә almamağa imkan verir vә bir çox mәsәlәlәrin hәllini sadәlәşdirir.
Elektrik intiqal
Elektrik intiqalı — elektrik enerjisini mexaniki enerjiyə çevirən və həmin çevrilmiş enerjinin idarə olunmasını təmin edən elektromexaniki qurğuya deyilir. Elektrik intiqalı əsas etibarı ilə istehsal mexanizmlərinin hərəkət etməsi üçün tətbiq olunur. Onun struktur sxemi belədir: M -> ÖM -> İO. Burada M - mühərrik, ÖM - ötürücü mexanizm, İO - işci orqandır. Elektrik intiqalının elektrik hissəsi mühərrikdən və elektrik aparatlarından ibarətdir. Onun mexaniki hissəsi isə işçi orqanın xarakterindən asılı olaraq çarx qolu, sürgü qolu, reduktor, hərəkəti təmzimləyən sürət qutusundan və s. ibarətdir.
Elektrik intiqalı
Elektrik intiqalı — elektrik enerjisini mexaniki enerjiyə çevirən və həmin çevrilmiş enerjinin idarə olunmasını təmin edən elektromexaniki qurğuya deyilir. Elektrik intiqalı əsas etibarı ilə istehsal mexanizmlərinin hərəkət etməsi üçün tətbiq olunur. Onun struktur sxemi belədir: M -> ÖM -> İO. Burada M - mühərrik, ÖM - ötürücü mexanizm, İO - işci orqandır. Elektrik intiqalının elektrik hissəsi mühərrikdən və elektrik aparatlarından ibarətdir. Onun mexaniki hissəsi isə işçi orqanın xarakterindən asılı olaraq çarx qolu, sürgü qolu, reduktor, hərəkəti təmzimləyən sürət qutusundan və s. ibarətdir.
Elektrik konnektoru
Elektrik konnektoru — elektrik dövrəsini mexaniki olaraq birləşdirib-ayırmaq üçün nəzərdə tutulmuş elektrotexniki qurğu. Adətən iki və ya daha artıq hissədən ibarətdir: çəngəl və ona uyğun rozet. Məişətdə çox vaxt "şteker" (ing. stecker) sözü ilə də adlandırılır. Bəzən qeyri-normativ leksikada "papa", yaxud "erkək" və "mama", yaxud "dişi" deyimlərindən də istifadə edilir. "Erkək" konnektorların kod nişanlanmasında çox zaman M (ing. male) və ya P (ing. plug) hərfi olur. Məsələn, DB-25 bağlayıcısının millər olan hissəsi DB-25M və ya DB-25P kimi nişanlana bilər. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Elektrik lampası
Elektrik lampası — elektrik enerjisi ilə qidalanan işıqlandırma avadanlığı. XIX əsrin sonuncu onilliyində ilk olaraq Avropada, daha sonra isə bütün dünyada istifadə edildi. Elektrik işıqlandırılması elm və texnikanın tarixində çox mühüm hadisələrdən biri olmaqla, həm də böyük və cürbəcür nəticələrə gətirdi. Lampanın bu formasını Thomas Edison icad edib və bu icad digər icadları qabaqlayaraq bütün dünyaya uğurla yayılıb. Həmin dövrdə iki tip: közərmə və qövs elektrik lampası yaradılmışdı. Onların iş prinsipi Volta qövsünə əsaslanırdı: əgər güclü cərəyan mənbəyinin qütblərinə qoşulmuş iki naqilin əks uclarını bir‐birinə toxundurub sonra bir neçə millimetr məsafəyə uzaqlaşdırsaq, bu naqillərin həmin (toxundurulub uzaqlaşdırılan) ucları arasında parlaq işıq saçan alov yaranar. Metal naqillər əvəzinə ucları itilənmiş (iynə şəklinə salınmış) iki kömür çubuq götürüldükdə bu hadisə daha gözəl və daha parlaq olar. Bu çubuqları tətbiq olunan gərginliyin kifayət qədər böyük qiymətlərində onların ucları arasında gözqamaşdırıcı şiddətə malik işıq əmələ gəlir.
Elektrik motoru
Elektrik mühərriki — elektromexaniki çevrici olub elektrik enerjisini mexaniki enerjiyə çevirir. Elektrik mühərriklərində (EM) valda oturdulmuş dolaqlarda maqnit sahəsinin yaratdığı qüvvə nəticəsində hərəkət yaranır və beləliklə val fırlanır. Buna görə də, elektrik mühərriklər həm də generatorun əksi tərəfi kimi qəbul edilir. EM-lərdə çox vaxt fırlanma, bəzi hallarda isə xətti hərəkət almaq mümkündür. Bu mühərriklər müxtəlif iş maşınlarını hərəkət etdirmək üçün tətbiq olunur. = Təsnifatı = Sabit elektrik cərəyanla işləyən EM, Dəyişən elektrik cərəyanla işləyən EM,-Sinxron EM-lərin rotoru firlanma tezliyi ilə maqnit sahəsinin firlanma tezliyi ilə üst-üstə düşür. -Asinxron EM-lərdə rotoru firlanma tezliyi ilə maqnit sahəsinin firlanma tezliyi ilə üst-üstə düşmür.Addım mühərrikləri – bunlarda rotorun vəziyyəti addımlarla təyin olunur. Rotoru istənilən vəziyyətə döndərmək üçün lazımi dolağa cərəyan impulsu vermək lazımdır. Vəziyyəti dəyişmək üçün başqa dolağa impuls ötürülür. Ventil mühərriklər – EM mühərrikləri olub qapalı sistemdən ibarətdir.
Elektrik mühəndisliyi
Elektrik mühəndisliyi — elektrik, elektronika və elektromaqnetizmdən istifadə edən avadanlıqların, cihazların və sistemlərin öyrənilməsi, layihələndirilməsi və tətbiqi ilə məşğul olan mühəndislik sahəsidir. Elektrik mühəndislyi 19-cu əsrdən etibarən telefon, teleqraf, elektrik enerjisinin istehsalı, paylanması və geniş miqyasda istifadəsi ilə birlikdə ayrıca bir elm sahəsi kimi meydana çıxmışdır. Elektrik mühəndisliyi müasir dövrdə geniş sahələrə bölünür. Bura daxildir: elektronika, rəqəmli kompüterlər, elektroenergetika, telekommunikasiya, idarəetmə sistemləri, radioelektronika, siqnalların emalı, cihazqayırma və mikroelektronika. Elektrik mühəndisləri bir qayda olaraq, elektrik mühəndisliyi və ya elektronika mühəndisliyi dərəcəsinə sahibdirlər. Bu işlə məşğul olan mühəndislər peşəkar sertifikatlaşdırma və peşəkar birliyin üzvləri ola bilər. Belə birliklərə Elektrik mühəndisləri İnstitu və Mühəndislik və Texnologiya İnstitutu daxildir. == Tarix == Elektrik sözü fizika vә texnikanın inkişafı prosesindә bir çox dәyişikliyә uğramışdır. Sadә elektrik vә maqnit hadisәlәri, bәzi cisimlәrin (mәs., kәhrәbanın) sürtünmә nәticәsindә yüngül cisimlәri özünә çәkmәsi, yәni elektriklәnmә xassәsi vә s. hәlә qәdimdәn mәlum idi.
Elektrik mühərriki
Elektrik mühərriki — elektromexaniki çevrici olub elektrik enerjisini mexaniki enerjiyə çevirir. Elektrik mühərriklərində (EM) valda oturdulmuş dolaqlarda maqnit sahəsinin yaratdığı qüvvə nəticəsində hərəkət yaranır və beləliklə val fırlanır. Buna görə də, elektrik mühərriklər həm də generatorun əksi tərəfi kimi qəbul edilir. EM-lərdə çox vaxt fırlanma, bəzi hallarda isə xətti hərəkət almaq mümkündür. Bu mühərriklər müxtəlif iş maşınlarını hərəkət etdirmək üçün tətbiq olunur. = Təsnifatı = Sabit elektrik cərəyanla işləyən EM, Dəyişən elektrik cərəyanla işləyən EM,-Sinxron EM-lərin rotoru firlanma tezliyi ilə maqnit sahəsinin firlanma tezliyi ilə üst-üstə düşür. -Asinxron EM-lərdə rotoru firlanma tezliyi ilə maqnit sahəsinin firlanma tezliyi ilə üst-üstə düşmür.Addım mühərrikləri – bunlarda rotorun vəziyyəti addımlarla təyin olunur. Rotoru istənilən vəziyyətə döndərmək üçün lazımi dolağa cərəyan impulsu vermək lazımdır. Vəziyyəti dəyişmək üçün başqa dolağa impuls ötürülür. Ventil mühərriklər – EM mühərrikləri olub qapalı sistemdən ibarətdir.
Elektrik müqaviməti
Elektrik müqaviməti — naqilin uzunluğu ilə düz, en kəsiyinin sahəsi ilə tərs mütənasib olub onun növündən asılıdır və cərəyanın keçməsinə mane olan keyfiyyətdir, R=ρl\S Burada R - naqilin müqaviməti, ɭ - uzunluğu, S - en kəsiyinin sahəsi, ρ - xüsusi müqavimətdir. R=U/İ R-elektrik müqaviməti, U-gərginlik və İ-cərəyan şiddətidir. Elektrik müqavimətinin vahidi BS-də alman alimi Georq Simon Om-un şərəfinə 1 om götürülür. == Əlaqədar anlayışlar == 1 Om - elə naqilin müqavimətidir ki, bu naqilin uclarına 1 V gərginlik tətbiq etdikdə ondan 1 A cərəyan keçsin. Xüsusi müqavimət - tili 1 m olan kub şəkilli naqildən kubun tili istiqamətində cərəyan keçən zaman yaranan müqavimətdir. Xüsusi müqavimətin BS-də vahidi 1 om·m-dir. Xüsusi müqavimətin texniki vahidi - 1 m uzunluqlu 1mm2 en kəsikli naqilin müqavimətidir. Xüsusi müqavimət cədvəllərində hər iki vahidlə qiymət verilir. 1Om mm2\m=10−6Om·m. Kifayət qədər yüksək temperaturlarda metalların müqavimətləri temperaturdan xətti asılıdır, Rt=R0(1+αt).
Elektrik qatarı
Elektrik qatarı — şəhərlərdə yol üstündə döşənmiş xüsusi relslərdə hərəkət edən sərnişin nəqliyyat vasitəsidir.
Elektrik yarımstansiyası
Yarımstansiya — elektrik enerjisinin istehsalı, ötürülməsi və paylanması sisteminin bir hissəsidir. Yarımstansiya gərginliyi yüksəkdən alçağa və ya əksinə çevirir. Elektrik enerjisinin istehsal olunduğu stansiya və istehlakçı arasında enerji müxtəlif gərginlik səviyyələrində bir neçə yarımstansiyaya daxil ola bilər. Yarımstansiyada yüksək gərginlik və aşağı gərginlikli paylayıcı arasında gərginlik səviyyələrinin dəyişdirilməsi üçün transformator ola bilər. Ümumiyyətlə yarımstansiyalar uzaq məsafədən nəzarət və idarəetmə üçün SCADA sisteminə malikdirlər.
Elektrik zədələnmələri
Elektrik zədələnmələri — müxtəlif gərginlikli elektrik cərəyanı ilə kontakt nəticəsində baş verən yanıqlardır;Sadə şəkildə desək, elektrik zədələnmələri elektrik cərəyanın bədənin toxumaları boyunca yayılması nəticəsində əmələ gələn istiliyin təsirindən baş verən yanıqlardır. Elektrik enerjisi adətən dərin yanıqlara səbəb olur.Elektrik zədələnmələrinin səbəbi insanın elektrik enerjisi mənbəyi ilə birbaşa, yaxud dolayısilə əlaqədə olmasıdır. Düz (birbaşa) elektrik zədələnmələr — elektrik cərəyanının insan bədəninə elektrik dövriyəsini açarkən birbaşa keçməsi nəticəsində baş verir. Vasitəli (dolayısilə) elektrik zədələnmələr — volt qövsünün təsiri zamanı olur.Müəyyən gərginlikli və güclü elektrik cərəyanının təsiri nəticəsində elektrik zədə əmələ gələrək həm yerli, həm də mərkəzi sinir, tənəffüs, ürək-damar sistemlərində çox güclü, dərin funksional pozulmalar törədir.Zədələnmələrin ağırlığı və nəticəsi təkcə elektrik cərəyanının fiziki parametrlərindən başqa cərəyan keçrici əşya ilə kontaktda olan dərinin müqavimətindən asılıdır. Quru dərinin elektrik müqaviməti 100–2000 dəfə yaş dərinin müqavimətindən yüksəkdir və bu səbəbdən eyni gərginlikli elektrik cərəyanı birinci halda qorxulu zədələnməyə səbəb olmur, əksinə ikinci halda isə ölümlə nəticələnə bilir.Elektrik cərəyanının gərginliyi 500 V–dan çox olduqda dərinin müqavimətinin heç bir mənası olmayıb, təmas yerində bioloji toxumaların "deşilməsi" baş verərək elektrik cərəyanı işarələri, izləri əmələ gətirir.Çox vaxt cərəyanın təsiri nəticəsində orqanizmdə əmələ gələn dəyişikliklər terminal (bioloji ölümə yaxın) vəziyyətə gətirib çıxarır. == Elektrik zədələnmələrin ağırlıq dərəcələrinə görə təsnifatı == Elektrik zədələnmələrdə 4 ağırlıq dərəcəsi ayırd edilir:I dərəcə — təkcə elektrik cərəyanının təsiri anında şüur itməməsi fonunda skelet əzələlərinin qıcolma yığılmaları;II dərəcə — cərəyanın təsiri kəsildikdən sonra skelet əzələlərinin qıcolma yığılmalarının davam etməsi, huşun itməsi, tənəffüs və ürək fəaliyyətinin pozulması;III dərəcə — qıcolmalar olur, şüur itir, tənəffüs ritminin kobud pozulmaları qeyd olunur, nəbz yalnız yuxarı arteriyalarda izlənib, mil–bilək nahiyəsində isə itir;IV dərəcə — kliniki ölüm ilə nəticələnir.Elektrik cərəyanının yüngül təsiri zədələnmişin ümumi vəziyyətini dəyişməyə də bilər. Zədələnmişin müayinəsi zamanı təyin edilən qənaətbəxş vəziyyəti, sonrakı vəziyyətin ağırlaşmasına zəmin yaratmır.Elektrik cərəyanının daha ağır zədələnmələrində mərkəzi sinir sisteminin funksiyalarının pozulmaları baş verir. Zədələnmiş tormozlanma vəziyyətində olur, lakin bəzən nitq və hərəki oyanma mərhələləri baş verir. Huşun dərin tormozlanması və xarici qıcıqlara cavab reaksiyalarının olmaması vəziyyəti əmələ gəlir (komatoz vəziyyət).Ağır elektrik zədələnmələrdə qan dövranının və tənəffüsün pozulmaları ön plana çıxır. Səs tellərinin spastik yığılması, skelet əzələlərinin davamlı spazmı fonunda tənəffüsün dayanması inkişaf edir.
Elektrik çaydanı
İlk elektrik qızdırıcı cihazı çaydanın alt hissəsində yerləşdirilirdi. Su ilə qızdırıcı arasında metal təbəqə olduğundan o, çox gec qaynayırdı. 1923-cü ildə Artur Larqc xüsusi mis borudan ibarət qızdırıcı cihazı çaydanın içərsində yerləşdirdi. Bu çaydanda su çox sürətlə qızırdı.
перелицо́вка послужи́ть фа́ги захомута́ть непотуха́ющий покорпе́ть секу́чий туберо́зный курный alexandrine astroscope Bintu Camorra Genevra Junker living chemistry nestle pinta pultaceous push in variety turn wash drawing автопогрузчик ведьма способ